Physicists Nail Down the ‘Magic Number’ That Shapes the Universe (2024)

Guellati-Khélifa has been improving her experiment for the past 22 years. She gauges the fine-structure constant by measuring how strongly rubidium atoms recoil when they absorb a photon. (Müller does the same with cesium atoms.) The recoil velocity reveals how heavy rubidium atoms are — the hardest factor to gauge in a simple formula for the fine-structure constant. “It’s always the least accurate measurement that’s the bottleneck, so any improvement in that leads to an improvement in the fine-structure constant,” Müller explained.

The Paris experimenters begin by cooling the rubidium atoms almost to absolute zero, then dropping them in a vacuum chamber. As the cloud of atoms falls, the researchers use laser pulses to put the atoms in a quantum superposition of two states — kicked by a photon and not kicked. The two possible versions of each atom travel on separate trajectories until more laser pulses bring the halves of the superposition back together. The more an atom recoils when kicked by light, the more out of phase it is with the unkicked version of itself. The researchers measure this difference to reveal the atoms’ recoil velocity. “From the recoil velocity, we extract the mass of the atom, and the mass of the atom is directly involved in the determination of the fine-structure constant,” Guellati-Khélifa said.

In such precise experiments, every detail matters. Table 1 of the new paper is an “error budget” listing 16 sources of error and uncertainty that affect the final measurement. These include gravity and the Coriolis force created by Earth’s rotation — both painstakingly quantified and compensated for. Much of the error budget comes from foibles of the laser, which the researchers have spent years perfecting.

For Guellati-Khélifa, the hardest part is knowing when to stop and publish. She and her team stopped the week of February 17, 2020, just as the coronavirus was gaining a foothold in France. Asked whether deciding to publish is like an artist deciding that a painting is finished, Guellati-Khélifa said, “Exactly. Exactly. Exactly.”

Surprisingly, her new measurement differs from Müller’s 2018 result in the tenth digit, a bigger discrepancy than the margin of error of either measurement. This means — barring some fundamental difference between rubidium and cesium — that one or both of the measurements has an unaccounted-for error. The Paris group’s measurement is the more precise, so it takes precedence for now, but both groups will improve their setups and try again.

Though the two measurements differ, they closely match the value of alpha inferred from precise measurements of the electron’s g-factor, a constant related to its magnetic moment, or the torque that the electron experiences in a magnetic field. “You can connect the fine-structure constant to the g-factor with a hell of a lot of math,” said Cornell. “If there are any physical effects missing from the equations [of the Standard Model], we would be getting the answer wrong.”

Instead, the measurements match beautifully, largely ruling out some proposals for new particles. The agreement between the best g-factor measurements and Müller’s 2018 measurement was hailed as the Standard Model’s greatest triumph. Guellati-Khélifa’s new result is an even better match. “It’s the most precise agreement between theory and experiment,” she said.

And yet she and Müller have both set about making further improvements. The Berkeley team has switched to a new laser with a broader beam (allowing it to strike their cloud of cesium atoms more evenly), while the Paris team plans to replace their vacuum chamber, among other things.

What kind of person puts such a vast effort into such scant improvements? Guellati-Khélifa named three traits: “You have to be rigorous, passionate and honest with yourself.” Müller said in response to the same question, “I think it’s exciting because I love building shiny nice machines. And I love applying them to something important.” He noted that no one can single-handedly build a high-energy collider like Europe’s Large Hadron Collider. But by constructing an ultra-precise instrument rather than a super-energetic one, Müller said, “you can do measurements relevant to fundamental physics, but with three or four people.”

Correction: December 4, 2020
The original version of this article incorrectly reported the newly measured value of alpha as 1/137.03599920611; the correct number is 1/137.035999206, with an uncertainty of 0.000000011. In an article about the “nailing down” of the constant’s value, we regret the error.

This article was reprinted onTheAtlantic.comand inSpanish atInvestigacionyciencia.es.

Physicists Nail Down the ‘Magic Number’ That Shapes the Universe (2024)

References

Top Articles
Latest Posts
Article information

Author: Van Hayes

Last Updated:

Views: 6866

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Van Hayes

Birthday: 1994-06-07

Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

Phone: +512425013758

Job: National Farming Director

Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.